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ABSTRACT: In-line monitoring of chemical processes is desired for its numerous advan-
tages, such as lesser waste, lower developmental cycle time, and lesser costs. In this
study, a methodology is presented for estimating polymer rheological properties using
fiber-optic near-infrared (NIR) spectroscopy. Predictive calibration models are devel-
oped for simultaneous, in-line monitoring of polymer melt flow index (MI) and como-
nomer concentration for a system of poly(ethylene vinyl acetate) copolymers. The NIR
spectra of flowing, molten poly(ethylene vinyl acetate) (EVA) copolymers are collected
in a flow cell attached to a single-screw extruder. Multivariate statistical regression
analysis is presented for correlation of MI and absorbance in the methylene (C{H)
stretch, first overtone NIR wavelength region (1620–1840 nm). Results for simultane-
ous, real-time monitoring of MI and comonomer composition are discussed in detail.
q 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 859–872, 1998
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INTRODUCTION ments.3–6 The fiber-optic probes used for this pur-
pose should be robust enough to withstand such
conditions, as the probes are mounted directlyNIR spectroscopy has numerous advantages, such

as remote data collection capabilities coupled with into the molten flow stream. Because commercial
probes with capabilities to endure such harsh con-rapid data analysis methods, availability of fiber

optics, and lack of sample-handling problems. ditions have become available, such measure-
ments have been made feasible.7,8 This technologyConsequently, it has proven to be an ideal analyti-

cal technique for chemical process monitoring. In- is now being employed in the commercial industry
and is no longer restricted to measurements madeline measurements of chemical composition, poly-

mer relative viscosity, and polymer morphology using off-line laboratory instrumentation. At-
tempts are being made to extend the applicabilityhave been carried out in earlier studies.1,2 Feasi-

bility studies have been conducted of composition of this technology to estimate industrially im-
portant processing parameters, for example, MImeasurements under extreme process conditions,

for example, molten flowing polymers during ex- and dynamic rheological properties in near real-
time.9trusion, with focus on development of fiber optics,

optical probes, and near real-time measure- The following work will demonstrate the feasi-
bility of extending this technique to make simul-
taneous measurements of polymer MI and compo-

Correspondence to: M. G. Hansen.
sition of molten EVA samples. A procedure will
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q 1998 John Wiley & Sons, Inc. CCC 0021-8995/98/060859-14 be described using multivariate statistical tools
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860 HANSEN AND VEDULA

Figure 1 Schematic of the experimental setup for in-line Fourier transform near-
infrared spectrometry of molten, flowing polymers.

for developing calibration models, which will be varying levels of orientation and orientation dis-
tribution in the optical measurement volumeutilized for real-time estimation of rheological

properties during extrusion. would affect the NIR absorption spectra in some
manner. These rheological effects on the NIR
spectra, which are attributed to anisotropic rheo-
logical flow, are lower order magnitude effects.THEORY

In the NIR absorption spectra, variations in
chemical composition are dominant effects, andCorrelation of Rheological Properties with NIR
in this study, these variations of comonomer con-Absorption Spectra
centration are termed as the primary factors of

In this work, in-line NIR measurements were car- variation. Compared to the strong, primary effects
ried out on molten, EVA copolymers in an extru- of chemical composition, the rheological flow ef-
sion process. During polymer extrusion, the rheo- fects are only subtle variations in the NIR spectra,
logical flow behavior of molten polymers is aniso- and these lower order variations are termed as
tropic. The extent of anisotropic nature of flow is secondary factors of variation. It is noted that
governed by the level of molecular orientation and these rheological effects contain important infor-
the orientation distribution of flowing polymer mation about physical properties that directly cor-
melt. Under nominal extrusion operating condi- relate with the molecular weight parameters. One
tions involving more or less constant shear rates, such industrially important parameter is the
these anisotropic effects will be strong functions polymer MI. In a very generic sense, MI is in-
of polymer weight-averaged molecular weight versely related to the polymer molecular weight
(MV w ) , MWD, chain length, entanglements, and parameters, such as the MV w values.10 At moder-

ately low stress values, the MI resembles an ‘‘in-branching parameters. It is expected that these
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Table I Laboratory Measurements for channel in the flow cell, the nominal shear rate
Comonomer Concentration and MI Values in was estimated atÇ 25 s01 . All EVA samples were
EVA Samples extruded at more or less constant shear rates. A

temperature gradient is maintained in the ex-
Sample VA Concentration Melt Index truder to produce homogeneous melting and
Number (wt %) (g/10 min) proper conveying of the polymer along the screw.

The temperature of the flow cell at the exit port1 0 1.89
of the gear pump was set at 2007C. This is the2 9.08 6.45
temperature at which the NIR spectra were col-3 12.12 7.79
lected. The temperature and pressure conditions4 12.04 0.34

5 15.18 7.84 are regulated by a temperature and pressure con-
6 17.91 0.64 trol unit. Dual transmission fiber-optic probes
7 18.06 6.92 commercialized by Sensotron Inc.y are used to
8 24.89 17.54 transmit light through the polymer flow stream.7
9 25.22 370.0 Details of the fiber-optic probe development have

10 28.49 6.07 been reported in an earlier work.12 The optical
11 27.84 143.0 path length in the flow cell, or the distance be-12 28.59 368.0

tween the probe windows, is varied by using me-13 28.37 23.68
chanical spacers of different dimensions. In the14 32.05 37.8
current setup, the path length can be varied be-
tween 1 and 9.5 mm. A path length of 2.5 mm was
used for the current set of experiments. This path

verse’’ viscosity, and a high MI value implies a length was chosen to keep the maximum ab-
low zero-shear viscosity, ho , or a low MV w value. In sorbance at less than 1.0. A 1.5-mm diameter opti-
general, for EVA random copolymers, these rheo- cal beam is produced by the Sensotrony NIR
logical properties are not related to the como- transmission probes.
nomer ratio of ethylene and vinyl acetate (VA). The fiber-optic probes are connected via 500-m
Only at very high VA concentrations (ú30 wt % single-fiber fiber-optic cables to an Analecty Dia-
VA), the incorporation of VA favors increased mond-20 (DS-20) Fourier transform near-infra-
branching in the copolymer, and subsequently, af- red spectrometer (FT-NIR).13 This spectrometer
fects rheological behavior to some extent.11

is equipped with an interferometer that works on
Therefore, the primary effects (due to chemical the moving-wedge principle. For measurements

composition) and secondary effects (due to rheo- in the NIR region of the electromagnetic spec-
logical flow) on the absorption spectra are inde- trum, the wedges are made up of calcium fluoride
pendent; and these effects can be separated to (CaF2). The spectrometer uses a quartz halogen
provide simultaneous information about the lamp as the source and an Indium Arsenide
chemical composition and rheological functions. (InAs) detector with CaF2 windows. The wave-
In the following sections, the experimental stud- number resolution used for the current experi-
ies will be described, and results will be detailed ments is 8 cm01 .
for quantitative analysis of the MI-absorbance re-
lationship.

APPARATUS

Figure 1 shows a schematic of the system for in-
line molten polymer analysis used in this study.
Molten polymer is produced by a 3/4-inch Bra-
bender single screw extruder, with an L/D ratio
of 25:1. The polymer from the extruder is pumped
to a gear pump. A uniform mass flow rate of the Figure 2 Chemical structure of ethylene and vinyl
polymer is supplied from the gear pump to a vari- acetate monomers and poly(ethylene vinyl acetate)

(EVA) copolymer.able pathlength flow cell. For the rectangular flow
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862 HANSEN AND VEDULA

Figure 3 Overlaid absorbance spectra of EVA samples in the NIR wavelength region
of 1620–1840 nm. The absorbance band is attributed to methylene (C{H) stretch,
first overtone vibrational mode.

EXPERIMENTAL of methylene (C{H) stretching,14 and is a com-
mon feature for all macromolecules. (Note the
presence of methylene in EVA copolymers in Fig.The system of EVA samples chosen for this study
2.) With the incorporation of VA into the copoly-consisted of primarily two factors of variation,
mer, the number density of the C{H stretch vi-namely the comonomer ratio or the concentration
brations in the optical measurement volume (2.5of VA in the copolymer, and MV w . The MV w , com-
mm long and 1.5 mm in diameter) decreases. Thisbined with the branching in the polymer, governs
leads to a decrease in the intensity of the polyeth-the melt viscosity of the polymer through the ex-
ylene doublet around 1725 nm and 1765 nm. Thistruder die. In this context, the melt index is re-
difference in the absorbance values allows for thelated to both the MV w and the branching in the
quantification of VA. Subtle changes are observedpolymer chains. Table I shows the VA content and
in the shoulders of the methylene stretch doublet.MI values for the available EVA samples. It is
A second region (not shown in Fig. 3), tentativelyobserved that the VA concentration varies from 0
assigned to a combination band of carbonylwt % to 32 wt %, and the MI values vary from
(C|O) and C{H stretches, occurs in the wave-0.34 g/10 min to 370 g/10 min. The primary anal-
length range 2000 to 2200 nm, with a peak atysis for the melt index values was carried out us-
2135 nm. This peak increases with an increase ining ASTM standardized analysis procedure and
the VA content.equipment13 at the laboratory facility of the com-

pany that provided the samples.
The in-line NIR transmission spectra of EVA

samples were collected in the melt, in the wave- ANALYSIS
length range of 1000 to 2500 nm. Ten replicate
spectra were collected for each sample, and each Mathematical
spectrum was averaged over 64 scans. Figure 2
shows the chemical structures of the monomers In attempts to correlate the MI with the ab-

sorbance spectra, it was observed that the rangeand the EVA copolymer. Figure 3 shows a plot of
the overlaid absorbance spectra of EVA samples of MI values in the available set was very large.

Samples were available with a wide range of MIin the NIR wavelength range of 1620 to 1840 nm.
The absorbance band in this wavelength region values, from very high viscosity (MI Ç 0.34 g/10

min) to very low viscosity (MI Ç 370 g/10 min).corresponds to the first overtone vibrational mode
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Figure 4 Overlaid plot of absorbance-first derivative spectra of EVA samples in the
NIR wavelength region of 1620–1840 nm. The absorbance band is attributed to methy-
lene (C{H) stretch, first overtone vibrational mode. Differentiated spectra are free of
baseline offsets and provide better spectral resolution.

This implies that there is significant variation in rheological material functions is nonlinear. Tak-
ing the natural logarithm of the expression onthe MV w parameters among the samples. Because

such large variations lead to only subtle effects of both sides, the following ‘‘affine’’ relationship is
obtained:lower order magnitude on the NIR spectra, it is

assumed that a first-order response from the MV w

paramaters absorbance relationship can be ob- ln(ho ) Å ln(K ) / a ln(MU w ) (2)
tained by expressing the xx parameters in terms
of their natural logarithms. Such data prepro- where K is a constant of proportionality. In the
cessing also amounts to ‘‘linearizing’’ the vari- previous section, it was mentioned that the MI
ables used for regression. Therefore, in conjunc- variation with MV w parameters and ho was of an
tion with the above assumption, any rheological inverse proportionality. This relationship could be
parameter, such as MI, must be processed before expressed as follows:
regression using the same correlation of natural
logarithms. The theoretical justification for using

ln(MI) } 0k ln(ho ) (3)natural logarithms for such rheological properties
comes from the definition of material functions,

Therefore, in the multivariate data analysis forfor example zero-shear viscosity in dynamic rheo-
melt index, the Y matrix consists of ln(MI) val-logical experiments. For polymer melts with mo-
ues. Linearity is retained by mean-centering thelecular weights greater than the critical molecular
Y columns, such that the ln(K) term vanishesweight Mc , the zero-shear viscosity is given by the
after subtraction.proportionality:

ho } MU

a
w (1) Multivariate Analysis

The absorbance peaks in the NIR spectra arewhere ho is the zero-shear viscosity, and a is a
constant exponent. Berry and Fox15 observed that broad and cover a large wavelength range. Unlike

the narrow, sharp peaks in the mid-IR region thatfor linear homopolymers of narrow molecular
weight distribution, aÅ 3.4. The above expression correspond to fundamental vibrational bands, the

NIR region consists of first and higher overtonesimplies that the relationship of MV w with most
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864 HANSEN AND VEDULA

Figure 5 PLS calibration of ln(MI): PRESS plot for five factors obtained from LAS
crossvalidation. The optimal number of factors was chosen using the PRESS criterion
coupled with an F-statistic criterion.

of these fundamental bands. Therefore, the NIR random noise in the data. A qualitative interpre-
tation often results in relating the initial principalregime comprises of broader bands and consider-

able band overlap, unlike the mid-IR region. This components directly to the original variables.
Thus, PLS is a very powerful tool for both quanti-makes quantitative analysis more difficult and

simple multiple linear regression (MLR) tech- tative and qualitative analyses, and helps in the
formation of robust calibration models.niques cannot be used.16 Mathematical modeling

for NIR spectra requires multivariate techniques A calibration model that uses an optimal num-
ber of factors is desired. Using fewer factors insuch as partial least squares (PLS) and principal

component regression (PCR).17–20 These methods the calibration model would mean excluding im-
portant information from the model, and usinginvolve data reduction of these highly correlated

spectra into a few factors that explain much of more factors would imply including noise and
thus, higher residuals in the predictions. There-the variance in the data. The current work used

PLS for data analysis and details of PCR, and its fore, the choice of an optimal calibration model
with minimum residuals is critical. Several statis-differences from PLS can be found in ref. (17).

In both methods, it is assumed that the prop- tical terms are introduced that help determining
the optimal number of factors. These terms areerty being calibrated, Y (e.g., VA concentration,

melt index, etc.) can be obtained from the ab- described below2:
sorbance spectra, X . In PLS, both X and Y matri-
ces are used for data compression. While building 1) PRESS (Predicted Residual Sum of Squares)
a calibration model for the data sets using PLS, value
the first few factors (also called principal compo-
nents, or latent variables, or eigenvectors) that PRESSj Å ∑

N

iÅ1

(yi 0 yP i ,j)2 (4)
explain much of the variance in the covariance
matrix, XTY , are evaluated, where XT is the trans-
pose of X . Details of this procedure are given in where ŷi and yi are the predicted and actual prop-

erty values respectively, of the i-th sample. N isref. (17). The latent variables can be rejected be-
cause they explain small variances, usually just the number of samples used for calibration, and
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Figure 6 LAS crossvalidation results: MI predictions for samples in the calibration
set. In this figure, it is observed that the NIR predicted MI values show excellent
agreement with the laboratory measured MI values.

j is an index for the number of latent variables where ŷi ,p and yi ,p are the predicted and the actual
property values of the i-th sample in the predic-incorporated into the model. The PRESS value is

a measure of the residual error, and the optimal tion set, respectively. NP is the number of samples
in an independent prediction set.number of factors is decided by a minimum

PRESS value criterion.

2) SEC (Standard Error of Calibration) RESULTS AND DISCUSSION

SEC Å
√

(NC
iÅ1 (yi ,c 0 yP i ,c )2

NC 0 1
(5) To separate the lower order, secondary rheological

effects from the strong, primary features of chemi-
cal composition in the NIR spectra, it was essen-

where ŷi ,c and yi ,c are the predicted and the actual tial to choose a random sample set for calibration,
property values of the i-th sample in the calibra- where the two variables of VA content and ln(MI)
tion set, respectively. NC is the number of sam- values had low correlation in their numerical en-
ples used in the calibration set. tries. Therefore, care was taken to avoid inadver-

After the calibration model is developed, it is tently capturing any information about VA con-
used to predict the desired property of interest, Y tent, while developing a calibration model for
of an independent test set (also called the predic- ln(MI). In this context, a statistical term called
tion set) . A residual error term, the standard de- the correlation coefficient, r , is introduced, which
viation between the laboratory value and the pre- is defined as follows:16

dicted value (calibration model) , is defined for
these predictions, as follows:

r Å cov(x , y )√
var(x )var(y )

(7)
3) SEP (Standard Error of Prediction

where for any given variables x (e.g., VA content)SEP Å
√

(NP
iÅ1 (yi ,p 0 yP i ,p )2

NP
(6)

and y (e.g., MI), var(x ) and var(y ) are the vari-
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866 HANSEN AND VEDULA

Table II Total y-Block Variance Explained for physical factor of variation, which is inherent in
Different Factors the absorbance spectra of these samples. Because

the MI and VA content variations were random for
VA Calibration MI Calibration this subset, it would ensure that a ‘‘false’’ relation-

Number of Model Total y - Model Total y - ship is not extracted between the two variables due
Factors Block Variance Block Variance

to numerical collinearity.Retained Explained (%) Explained (%)
For the trial subset, EVA samples were se-

lected in the VA content range of 24 wt % VA to1 99.7 36.5
32 wt % VA and ln(MI) values in the range of 1.82 99.9 95.6

3 99.9 99.6 (MI Ç 6 g/10 min) to 6 (MI Ç 370 g/10 min). In
effect, while developing the trial model, large VA
variations were suppressed, and significant varia-
tions in the MI values were incorporated. The cor-ances of x and y , respectively, and cov(x , y ) is
relation coefficient was a low value of 0.10 for thethe covariance of x and y .
trial set, which implied a fairly random set.An r value close to 1.0 implies very high correla-

Once a successful relationship between thetion between the two variables, while an r value
ln(MI) values and the absorbance spectra wasclose to 0 implies that the distribution of the two
established using the trial calibration model, avariables is random. To obtain a strict random dis-
new calibration model will be developed with antribution, a very large sample set is required. Un-
enlarged sample set. This sample set will includefortunately, such a large sample set is rarely com-
a wide range of variation in both VA content (wtmercially manufactured, and only a limited set of
% VA Ç 0 to 32) and ln(MI) values (ln(MI)14 samples was available for analysis. Therefore,
Ç 0.34 to 6). The final calibration model will befrom the available sample set, a subset of sample
tested for MI predictions of EVA samples belong-spectra was chosen for which the VA concentration
ing to two categories: (1) EVA samples with simi-values and ln(MI) values had very low correlation,
lar MI values but widely varying VA content, andto develop a trial calibration model for ln(MI). A
(2) EVA samples with widely varying MI valuessuccessful MI-calibration for this sample subset

would mean that the melt index is an independent but similar VA composition. A detailed analysis

Figure 7 Standard errors plot for PLS models with different principal components.
As expected, the SEC curve shows a decreasing trend with increasing number of factors.
The optimal number of factors is decided by the minimum PRESS value and an F-
statistic criterion.
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Figure 8 Plot illustrating the NIR predictions for melt index, MI. The MI calibration
model was built using ln(MI) values. A three-factor model was used for optimal predic-
tions for ln(MI) using the PRESS and the F-statistic criteria.

of the development of both the trial and the final principal components being incorporated each time.
The residual errors for the predictions of this ex-calibration models is given below.

Ten replicate spectra for each sample were in- cluded sample were evaluated from the actual values
and the NIR predicted values, as a function of thecluded in the analysis. First derivatives of the

spectra were taken to build the trial calibration number of principal components. In the next step,
this sample was included into the calibration set andmodel. Differentiated spectra (Fig. 4 are free of

any baseline offsets and expose any subtle varia- another sample was removed; and a similar proce-
dure was followed. This process was continued untiltions in the spectra, although they are noisier.

The smoothed data were standardized by mean- all samples in the original calibration set were left
out from the calibration at least once and used forcentering as a part of pretreatment. Mean-center-

ing involves subtracting the mean of each column internal validation. The crossvalidation procedure is
also advantageous in that it highlights sample out-in the X and Y matrices from the data points. One

spectrum, the average of the 10 replicate spectra, liers. Outlier samples are those samples that do not
fall in the linearity range decided by the calibrationfor each sample in the subset was included to form

the calibration set. model, and these are identified by unusually large
prediction errors, or PRESS values. If there are farFor the MI trial calibration model, the Y matrix

consisted of one column, of size (m 1 1), with the too many outliers, it means the existence of either
a nonlinear relationship or lack of any relationshipln(MI) values corresponding to each sample. A PLS

model based on the singular value decomposition between Y and X.
The optimal number of principal components,(SVD) method was utilized for evaluating the princi-

pal components.20 The calibration model was devel- or factors, was decided by evaluating a cumulative
PRESS term. For every principal component, thisoped by using a crossvalidation technique, called the

leave-a-sample (LAS) approach.2 The LAS crossvali- term was calculated by summing the individual
PRESS values for each sample [according to eq.dation procedure was essential because the sample

set was not large enough for two separate calibration (4)] . The number of factors retained in the final
calibration model corresponded to a minimum cu-and prediction subsets. According to this approach,

one sample was left out from the calibration model mulative PRESS value. In addition to the PRESS
value, an F-statistic criterion was used to decideevery time and chosen as an internal validation set.

This sample was predicted from a calibration model the optimal number of principal components re-
quired for calibration.19 This criterion is a statisti-developed on the remaining samples. Several such

calibration models were developed, with additional cal method, which takes into account the relative
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Figure 9 Plot illustrating the NIR predictions for vinyl acetate, VA concentration
(wt %). A one-factor model was developed for predicting the VA content using the
PRESS and the F-statistic criteria.

importance of incorporating additional factors the absorbance spectra, it is expected that a one-
component principal component would be suffi-into the calibration model.

The cumulative PRESS plot vs. number of prin- cient to estimate VA concentration.3 This result
was corroborated using the PRESS and the F-sta-cipal components is illustrated in Figure 5. In

combination with the F-statistic criterion, this tistic criteria. Because the rheological flow effects
are secondary effects, a larger number of principalplot suggested a model with three factors for opti-

mal MI predictions. Using eq. (5), the standard components are expected for optimal predictions.
From the earlier results on the trial calibrationresidual error for the model, or the SEC value,

was found to be 0.14 (on a natural log scale). set, a three-factor model was developed for pre-
dicting ln(MI). Table II shows the variance ex-Figure 6 shows the predictions for samples in the

calibration set, with a calibration model based on plained in the Y -blocks for the two calibration
models. From this table, it is observed that threethree factors. This plot shows excellent agreement

for the NIR predictions of MI with the actual MI factors are required to explain about 99.6% vari-
ance in the MI data, while only one factor is suffi-values obtained from primary analysis.

The above trial model established that there cient to account for about 99.7% variance in VA
content. For MI calibration, the inclusion of a sec-is independent information about the rheological

response in NIR absorbance spectra. With suit- ond principal component explains an additional
variance of 59.1%. Hence, the second principalable data preprocessing in the form of natural log-

arithms, multivariate techniques can be used to component is most significant during MI calibra-
tion and contains maximum information about MIcorrelate physical properties, such as MI with the

absorption spectra. With the success of the trial variance.
An external prediction set was formed usingmodel, the sample set was enlarged to include

larger variations in both variables, namely the spectra of samples, which were not included in the
calibration set. The calibration models developedVA content and the MI values. This sample set

was used to develop the final calibration model above were used to predict the samples in the pre-
diction set. The SEP values, as evaluated from eq.that would be used for real-time monitoring dur-

ing polymer extrusion. (6), for the two models were 0.46 for MI predictions
(three-factor model) and 0.62 wt % for VA predic-In conjunction with the MI calibration model,

a separate independent calibration model was de- tions (one-factor model). A plot of the standard er-
rors in the calibration and prediction set for theveloped to predict the VA concentration. Because

the VA content is a strong, dominant feature in MI-calibration model is shown in Figure 7. In this
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Figure 10 Schematic for real-time monitoring of VA content and melt index in EVA
copolymers.

figure, the SEP curve reiterates the fact that three to two different classes were used for real-time
predictions. Class A consisted of EVA samplesprincipal components give minimum residual error

for MI. The in-line predictions for ln(MI) and VA with widely varying VA concentrations, but simi-
lar MI values. These constituted the first threeconcentration for the final calibration and predic-

tion sets are shown in Figures 8 and 9, respectively. samples in Table III. Four EVA samples were in-
cluded in Class B. These samples consisted ofExcellent agreement is observed between the ac-

tual, laboratory primary analysis and the in-line, Ç 28 wt % VA and had very different MI values.
The samples in the two classes (one sample over-NIR predicted MI and VA values.
laps in the two classes), were continuously fed
through the extruder in the order in which they

Real-time Predictions during In-Line Extrusion are presented in the table.
The real-time predictions for VA content and MIFinally, the stability of the predictions using the

calibration models was tested for simultaneous, for Class A and Class B samples are illustrated in
Figure 11. It is observed that most predictions liereal-time predictions of MI and VA concentration

during extrusion. A generic schematic of the within the limits set by the SEP values. This implies
that the predictions for both VA concentration andmethodology for real-time monitoring is pre-

sented in Figure 10. EVA samples were continu- ln(MI) lie between the actual laboratory value
{ SEP. (In the figure, these limits are defined as theously fed through the extruder, and test scans

were taken. Data preprocessing of these spectra upper and lower detection limits, UDL and LDL,
respectively.) It is demonstrated that the calibration(such as first-derivative, mean-centering, etc.)

was carried out in a similar manner to the sample
spectra used for calibration. Each spectrum was Table III EVA Samples for Real-Time
averaged over 16 scans and every fifth spectrum Monitoring
was saved. One spectrum was saved after approxi-
mately every 40 s. The two calibration models Sample Class VA Concentration ln(MI)
built earlier were then used to estimate the de- Number Identity (wt %) Values
sired properties of VA content and MI. The real-

1 A 9.11 1.86time process monitoring modules, PC80y and
2 A 12.12 2.05FSP6802B,y available in the Analecty calibra-
3 A & B 28.49 1.80tion software, were used for spectral data collec-
4 B 27.84 5.91tion during extrusion.8
5 B 28.59 4.96The stability of predictions of the calibration
6 B 28.37 3.16models were tested on six EVA samples belonging
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Figure 11 In-line, real-time predictions for MI and VA content in Class A (samples
numbered 1, 2, and 3) and Class B (samples numbered 3, 4, 5, and 6) EVA samples.
The predictions for both primary (VA content) and secondary (MI) variables lie within
SEP limits associated with the calibration models. (SEP for VA-calibration model
Å 0.62 wt %; SEP for MI-calibration modelÅ 0.46 on a natural log scale.) The transition
region between successive samples exhibits intermediate properties of VA content and
MI. This region is also an indicator of the average sample residence time in the extruder.
(UDL: upper detection limit; LDL: lower detection limit.)

models can successfully estimate samples belonging ity conditions. This ‘‘blend’’ would progressively
change in both VA composition and MI from theto both classes. This reiterates that the PLS calibra-

tion models can separate the two independent fac- previous sample to the new sample. In Figure 11,
it is observed that the calibration models capturetors of variation in the EVA samples, namely MI

and VA concentration. the expected behavior in the transition region with
regard to intermediate properties of VA content andAnother observation is made in the smooth tran-

sition region between any two successive samples. melt viscosity in the blend. The transition region is
also an indicator of the average residence time ofIn this region, a ‘‘blend’’ of the two samples is ex-

pected in terms of both VA content and melt viscos- the sample in the extruder, gear pump, and flow
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cell. According to the figure, the MI values seem to k Array
LAS Leave-a-sample cross-validation ap-take a longer time to stabilize to steady values than

the VA concentration values. proach
LDL Lower detection limit for quantification
MI Melt flow index, [g/10 min]
MV w Weight average molecular weight of theCONCLUSIONS

polymer, [g/mol]
MWD Molecular weight distribution in theDuring extrusion of molten polymer melts, aniso-

tropic effects associated with the rheological flow polymer
m Index, number of rows in a matrixtranslate into variations in the NIR absorption

spectra. These effects allow correlation of rheolog- NC Number of samples in calibration set
NIR Near-infraredical properties, such as polymer MI with the NIR

spectra. In this study, a methodology is demon- PCR Principal component regression
PLS Partial least squaresstrated for simultaneous in-line monitoring of

both VA content and MI values in molten EVA PRESS Predicted residual sum of squares
p Used as a subscript to denote sample incopolymers. It is established that the variation of

MI in EVA copolymers is independently observed prediction set
r Correlation coefficientin the NIR absorption spectra. The robustness of

calibration models was tested by real-time predic- SEC Standard error of calibration
SEP Standard error of predictiontions on EVA samples belonging to two categories:

(1) EVA samples with similar MI values but SVD Singular value decomposition of a ma-
trixwidely varying VA content, and (2) EVA samples

with widely varying MI values but similar VA T Used as a superscript to denote trans-
pose of a matrixcomposition. The ability of the models to estimate

samples in these two distinct groups further vali- UDL Upper detection limit for quantification
VA Vinyl acetate comonomer, in EVA copol-dated the robustness of calibration. The predic-

tions for both VA concentration and MI lie within ymer
X NIR absorbance data matrixdetection limits decided by the SEP limits (0.62

wt % and 0.46, respectively). x Vector
Y Rheology data matrixIn the above experiments, one disadvantage is

the use of isotropic light. Unlike polarized light y Vector
y Regressed variablespectrometry, which allows a more detailed un-

derstanding of the mechanisms involved in molec- ˆ Symbol used to denote estimated values
of variables, obtained from regressionular orientation during flow (information in the

form of flow birefringence and dichroism), the
rheological flow effects observed in isotropic spec-
troscopy experiments are small, and at best, can
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